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This paper examines the evolution of a two-dimensional vortex which initially consists
of an axisymmetric monopole vortex with a perturbation of azimuthal wavenumber
m = 2 added to it. If the perturbation is weak, then the vortex returns to an
axisymmetric state and the non-zero Fourier harmonics generated by the perturbation
decay to zero. However, if a finite perturbation threshold is exceeded, then a persistent
nonlinear vortex structure is formed. This structure consists of a coherent vortex core
with two satellites rotating around it.

The paper considers the formation of these satellites by taking an asymptotic limit
in which a compact vortex is surrounded by a weak skirt of vorticity. The resulting
equations match the behaviour of a normal mode riding on the vortex with the
evolution of fine-scale vorticity in a critical layer inside the skirt. Three estimates of
inviscid thresholds for the formation of satellites are computed and compared: two
estimates use qualitative diagnostics, the appearance of an inflection point or neutral
mode in the mean profile. The other is determined quantitatively by solving the
normal mode/critical-layer equations numerically. These calculations are supported
by simulations of the full Navier–Stokes equations using a family of profiles based
on the tanh function.

1. Introduction
It has been observed in two-dimensional high-Reynolds-number flows that

axisymmetric coherent vortical structures arise spontaneously from random initial
conditions (Fornberg 1977; McWilliams 1984). Many studies of these coherent
structures focus on the behaviour of an axisymmetric vortex under a non-axisymmetric
perturbation, which could be weak or strong. These studies typically consider
perturbations with an azimuthal wavenumber m =2 or higher. (For discussion of
the m =1 case and its peculiarities see Llewellyn Smith 1995.) Early studies of
such vortices showed that they often return to an axisymmetric state. A vortex can
relax inviscidly to an axisymmetric state when the non-axisymmetric perturbation
becomes finely scaled owing to the spiral wind-up in the underlying flow (Melander,
McWilliams & Zabusky 1987). As the values of the perturbation vorticity do not
tend to zero pointwise, a more convenient notion of axisymmetrization is when
the non-axisymmetric components of the streamfunction ψ tend to zero for large
times. For large but finite Reynolds number R, the non-axisymmetric components of
the vorticity are destroyed, and hence the vortex axisymmetrizes, on the time scale
O(R1/3), which is fast compared to the slow viscous timescale of O(R) (Bernoff &
Lingevitch 1994; Bajer, Bassom & Gilbert 2001).
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Figure 1. Plot of the Gaussian vortex (a) and the tanh profile vortex (b), with σ = σ2 = 0.2,
relaxing to a tripole structure with R = 104 and δ = 0.5. Positive vorticity is shown as white,
negative vorticity is black and zero vorticity is grey; the peak vorticity values are saturated at
|Z| = 0.005.

As more numerical and experimental studies were carried out, it became apparent
that axisymmetrization occurs only for sufficiently weak perturbation amplitudes, and
that for larger amplitudes, the vortex can evolve into a persistent non-axisymmetric
state (Dritschel 1989, 1998; Koumoutsakos 1997; Rossi, Lingevitch & Bernoff 1997).
An example of a persistent nonlinear state is a multipole, which can be formed by
allowing an initial vorticity distribution of the form

Z(r, θ) = Z0(r) + δZm(r)eimθ + complex conjugate, (1.1)

to evolve freely in time. The variables (r, θ) are the usual polar coordinates and
Zm(r)eimθ is an m-fold perturbation to the axisymmetric monopole vortex Z0(r). The
real parameter δ > 0 is an amplitude and axisymmetrization occurs if δ is below a
threshold value. In the most studied case, the vorticity distributions take the form

Z0(r) =
1

4π
e−r2/4, Z2(r) =

r2

4π
e−r2/4, (1.2)

with m =2. The vortex evolves into a tripole which consists of a vortex core with two
opposite-signed satellites of vorticity rotating around it, if δ is above some threshold
value (Rossi et al. 1997; Barba 2006; Barba & Leonard 2007). This tripole structure
can be seen in figure 1(a), which shows the evolution of (1.1) and (1.2) with R = 104

and δ = 0.5 at t = 0, t = 300 and t =700. Negative vorticity is black in the panels,
and at t = 700 we can see the two negative satellites rotating around a positive vortex
core.

Such tripoles can also emerge from instabilities within axisymmetric shielded
monopoles, that is, comprising a vortex core with a ring of opposite-signed vorticity
encasing it and zero total circulation. This has led to many investigations of the
evolution of a tripole from these shielded monopoles by experiments (van Heijst,
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Kloosterziel & Williams 1991) and numerical studies (Carton & Legras 1994; Morel &
Carton 1994). The physical observation of these structures is not restricted to the labo-
ratory, however, as these tripoles have been observed in the ocean, first by Pingree &
Le Cann (1992).

There remain a number of unresolved issues involving such multipolar vortices.
For what choices of Z0(r) and Zm(r) do such structures form? How, if at all, are
these multipoles (which have both signs of vorticity present) related to persistent cat’s
eye structures in which the vorticity in the satellites is the same sign as the core?
The threshold parameter δ shows a dependence on the Reynolds number: does δ(R)
have a limiting value in the inviscid limit as R → ∞? Barba & Leonard (2007) have
run simulations showing that the threshold value δ(R) decreases as R is increased,
but the large-Reynolds-number limit has not been extensively researched.

The aim of this paper is to address some of these issues using a combination of
numerical simulations and an asymptotic limit in which we consider vortices with
sharp edges. To set the scene, we note that the phenomenon of tripole formation is
not restricted to Gaussian vortices: consider, for example the ‘tanh’ profiles

Z0(r) =
1

4π

1 − tanh((r2 − σ 2)/(4(1 − σ )))

1 + tanh(σ 2/(4(1 − σ )))
, (1.3)

Z2(r) =
r2

4π

1 − tanh
((

r2 − σ 2
2

)
/(4(1 − σ2))

)
1 + tanh

(
σ 2

2 /(4(1 − σ2))
) , (1.4)

(Hall, Bassom & Gilbert 2003a). As σ and σ2 are varied from 0 to 1, the axisymmetric
vortex and the perturbation change from a broad Gaussian-like form to a sharp
Rankine (top-hat) vortex. Figure 1(b) shows the evolution of these tanh profiles into
a tripole for the parameter values σ = σ2 = 0.2, R = 104 and δ = 0.5. In this case, the
negative satellites are clearly visible as the black regions outside the vortex core. Note
that while such sharp-edged vortices are convenient mathematically, they also arise
naturally in geophysical systems and two-dimensional turbulence via processes such
as vortex stripping (Legras & Dritschel 1993).

Using these tanh profiles in the limit as σ → 1 we are able to calculate an
inviscid threshold for the formation of satellite vortices using the theory of Balmforth,
Llewellyn Smith & Young (2001, hereinafter referred to as BLSY). As mentioned
above, another type of non-axisymmetric structure that can form is a ring of cat’s
eyes around a vortex core, which has vorticity everywhere of one sign: here the fluid
circulates about each cat’s eye (in a frame co-rotating with the ring) and the vorticity
is locally flattened. To be clear about our terminology, we will use the term cat’s eyes
to refer to cases where the vorticity is everywhere of one sign, multipoles for both
signs, and satellites to refer to either. These cat’s eyes may be generated for m = 2
by exposing an axisymmetric vortex to an irrotational external strain field that is
switched off after some given time. For a sufficiently weak strain, the vortex returns
to an axisymmetric state, and the non-axisymmetric perturbations are wound up into
spiral filaments (Briggs, Daugherty & Levy 1970; Bassom & Gilbert 1998; Le Dizès
2000). If the amplitude, of the strain is above some threshold amplitude, however,
the vorticity can locally homogenize to form a pair of cat’s eyes rotating around the
coherent vortex core (Schecter et al. 2000; Balmforth et al. 2001; Macaskill, Bassom &
Gilbert 2002; Turner & Gilbert 2007). Thus for m =2, cat’s eyes appear similar to the
satellites in a tripole vortex, except they are of the same sign as the core.
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Thresholds for cat’s eye formation in a Gaussian vortex have been obtained
numerically by Turner & Gilbert (2007) and by BLSY in their asymptotic model,
with qualitative agreement. In this paper, our aim is to study the threshold for the
formation of satellite structures for sharp-edged vortices using the asymptotic model
of BLSY in the absence of an external forcing, but with an initial condition equivalent
to that in (1.1) used for the formation of multipolar vortices. This model begins with
a smooth monopole vortex with the profile

Z0(r) = ZC(r) + εZS(r), (1.5)

which consists of a compact vortex ZC(r), that is where the vorticity is identically zero
beyond some radius, plus an asymptotically small ‘skirt’ εZS(r). The small parameter
that is exploited is ε. The simplest example of a compact vortex is a Rankine vortex,
where

ZC(r) =

{
1 (r < 1),
0 (r > 1).

(1.6)

This vortex supports an m = 2 Kelvin mode with a critical layer at r2 =
√

2 where
the angular velocity of the mode is equal to that of the fluid. When a weak skirt is
introduced, this wave interacts with vorticity in the critical layer of width ε and the
normal mode is replaced by a quasi-mode (Briggs et al. 1970; Schecter et al. 2000;
Turner & Gilbert 2007). A quasi-mode is essentially a special transient solution of
the linear initial-value problem where the streamfunction decays exponentially and
the vorticity wraps up into spiral filaments without decay.

The BLSY model yields a coupled system comprising an ODE for the normal mode
amplitude and a PDE for the vorticity in the critical layer, and these authors study this
system when the vortex is subjected to an external strain field. For weak strain there
is the linear quasi-mode and exponential decay, but for stronger perturbations, above
a threshold, persistent cat’s eyes form, as vorticity is homogenized in recirculating
regions in the critical layer. We also note in passing that rather than the BLSY
approach of solving the initial-value problem, Le Dizès (2000) seeks steady states
with asymptotically thin cat’s eyes, using a jump condition across the critical layer.

We adapt the asymptotic theory of BLSY to incorporate a non-zero initial mode
m condition, such as the examples (1.1) to (1.4). This involves only two complex
parameters, the initial amplitude of the normal mode and the initial strength of the
mode m vorticity in the critical layer, and these reduce to three real parameters
after rotation. Thus, the question of the formation of satellite vortices, within the
limit of sharp-edged vortices (or similar ones fitting the BLSY framework) amounts
to obtaining a threshold in a three-dimensional parameter space, when the initial
condition is allowed to evolve freely in time. Although we will be able to calculate
a threshold for the formation of satellites, we will not be able to determine the sign
of the vorticity in the satellites because the governing equations for the vorticity are
identical to those where the vorticity has an arbitrary constant added to it. Focusing
on the m =2 case, we study three methods of computing a threshold contour. The first
two are only qualitative: an inflection point diagnostic calculates when the azimuthally
averaged profile first develops an inflection point at the critical radius, and a neutral
mode diagnostic calculates when this azimuthal averaged profile supports a neutral
mode. We then simulate the BLSY system to obtain the true asymptotic threshold
using a ‘first bounce’ criterion for when the vorticity perturbations feed back onto
the basic profile strongly enough to produce satellites. We discuss the usefulness of
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the qualitative diagnostics and confirm the results by full Navier–Stokes simulations
of profiles of the form (1.3) and (1.4).

The structure of the paper is as follows. In § 2, we give the BLSY governing equations
and discuss initial conditions. In § 3, we take a weakly nonlinear version of the BLSY
equations and use this to calculate both the inflection point and the neutral mode
thresholds. Simulations of the BLSY system give the correct asymptotic threshold
and are detailed in § 4, whereas comparison with full Navier–Stokes simulations is
given in § 5. Some concluding remarks are set out in § 6.

2. Formulation
In this section, we give the equations from the asymptotic theory of BLSY. We use

their notation; see their paper for derivations, in particular rescalings, and discussion
(though a few results we need are to be found in Appendix B). The theory begins with
a profile of the form (1.5) which supports a normal mode with complex amplitude
ϕ̂(t). This interacts with the total vorticity ζT = βy + ζ (y, θ, t) in a thin critical layer,
where y is a rescaled inward-pointing radial coordinate with the critical layer at y = 0.
The parameter β = ± 1 specifies the background gradient; our interest is only in the
case β =1 so that the background profile is increasing with y, so decreasing with
radius r , and the vortex is stable. The equations are, with m =2 from now on:

∂tζ + y∂θζ + (β + ∂yζ )∂θϕ = 0, (2.1)

i∂tϕ̂ = χ(t) + 〈e−2iθ ζ 〉, (2.2)

ϕ(θ, t) = ϕ̂(t)e2iθ + c.c., (2.3)

〈f 〉 = PV

∫ ∞

−∞
dy

∮
f (y, θ, t)

2π
dθ. (2.4)

The normal mode of amplitude ϕ̂(t), riding on the compact vortex, drives a flow with
streamfunction ϕ(θ, t) defined by (2.3) in the critical layer, and (2.1) gives advection
of vorticity in this and the background shear from the compact vortex. Equation (2.2)
then gives the feedback on the normal mode with a principal-value integral defined
by (2.4).

We set the external forcing, that is strain, χ(t) to zero, but instead are interested
in adding an initial mode 2 disturbance, as in (1.1)–(1.4). In limits for which the
BLSY theory applies, any initial disturbance of this form amounts to specifying the
initial complex amplitude � of the normal mode, and the initial complex value of the
mode 2 vorticity in the critical layer, given by another complex constant Γ . We thus
use the initial condition

ζ (y, θ, t = 0) = Γ0 + Γ e2iθ + c.c., ϕ̂(t = 0) = �. (2.5)

Here, the additive constant Γ0, the mean vorticity in the critical layer, does not affect
the BLSY analysis as it does not enter into any of (2.1)–(2.4); hence, we set Γ0 = 0
throughout the analysis. However, the value of this parameter in the full Navier–
Stokes simulations ultimately determines whether the satellites formed are positive
(cat’s eyes) or negative (a tripole). Since after rotation, we can take one of Γ or
� to be purely real, we are left with a three-dimensional parameter space, and the
question: for which points in this space do persistent structures form in the critical
layer? By solving (2.1)–(2.5) in both weakly nonlinear and fully nonlinear settings,
we will calculate the inflection point, neutral mode and first bounce thresholds, above
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which the nonlinear satellites induced on the vortex persist, and below which the
vortex returns to an axisymmetric state. These thresholds will be of the form

F (Γ, �) = 0, (2.6)

which gives a surface in parameter space. The results we will obtain are universal in
that they apply to any vortex for which the BLSY model is valid.

However, to compare with full Navier–Stokes simulations, we shall focus on the
family of profiles in (1.3), which tend to the Rankine vortex (1.6) as σ → 1. In this
case, the m =2 critical layer occurs at r2 =

√
2 and so the small parameter ε for the

asymptotic expansions is proportional to Z′
0(r2), tending to zero as σ → 1. In this case,

the constants Γ and � are related to the parameters δ and σ2 from (1.4) via

Γ =
δZ2(r2)

πZ′
0(r2)2

, � =
8δP2

πZ′
0(r2)2

, (2.7)

where P2 is a projection on the normal mode, given by

P2 = − 1
8

(∫ 1

0

s3Z2(s) ds + PV

∫ ∞

1

sZ2(s)

2 − s2
ds

)
. (2.8)

These rescalings and this projection formula are explained, in a general setting, in
Appendix B.

Because of the principal-value integral in (2.4), the early evolution of this system
with the given initial condition has a singular forcing of the normal mode (cf. BLSY
§ 5.1). To handle this behaviour cleanly, we integrate over the short time interval from
t = 0 to a time t∗ satisfying 1 
 t∗ 
 1/L, where L is some large cutoff value of the
principal-value integral. We refer to this latter time t∗ as t = 0+ for brevity. For very
short times, the (β + ∂yζ )∂θϕ term in (2.1) is much smaller than the other two terms,
and so we have

ζ (y, θ, t) � Γ e−2iyt+2iθ + c.c., (2.9)

and then

i∂t ϕ̂ = 〈ζe−2iθ〉 � Γ
sin(2Lt)

t
. (2.10)

Therefore on the short time scale of t = O(L−1), a large forcing of the quantity ϕ̂

takes place. Using ∫ ∞

0

sin(u)

u
du =

π

2
, (2.11)

we find that at time t =0+, ϕ̂(0+) = � − iπΓ/2.
We rewrite the initial-value problem (for numerical and analytical reasons), now

starting at time t =0+ by writing

ζ ′ = ζ − (Γ e−2iyt+2iθ + c.c.), (2.12)

to obtain the system of equations

∂tζ + y∂θζ
′ + (β + ∂yζ

′ − 2itΓ e−2iyt+2iθ + 2itΓ ∗e2iyt−2iθ )∂θϕ = 0, (2.13)

i∂t ϕ̂ = 〈e−2iθ ζ ′〉, ϕ = ϕ̂(t)e2iθ + c.c., (2.14)

(where the star denotes the complex conjugate) with the new initial conditions

ζ ′(y, θ, 0+) = 0, ϕ̂(0+) = � − iπΓ/2. (2.15)
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In the next section, we derive the weakly nonlinear diagnostics we use for calculating
our threshold criteria.

3. Weakly nonlinear results
In this section, we consider a weakly nonlinear solution to (2.13)–(2.15) and derive

the inflection point and the neutral mode diagnostics for determining when satellites
persist in a vortex or when the vortex returns to an axisymmetric state.

3.1. Weakly nonlinear critical-layer equations

We seek an approximate solution to (2.13)–(2.15) by introducing

ζ ′(y, θ, t) = ζ̂ ′(y, t)e2iθ + c.c. + ζ̄ (y, t) + · · · . (3.1)

This expansion neglects all the higher-order effects; however, it does allow us to
calculate the two qualitative criteria described above which have been used in the
study of BLSY. Substituting (3.1) into (2.13), we obtain the set of equations

∂t ζ̂
′ + 2iy ζ̂ ′ + 2iβϕ̂ = 0, (3.2)

∂t ζ̄ − 2i(∂y ζ̂
′ − 2itΓ e−2iyt )ϕ̂∗ + c.c. = 0, (3.3)

i∂t ϕ̂ = 〈ζ̂ ′〉. (3.4)

The initial conditions for this problem are

ζ̂ ′(y, 0+) = 0, ζ̄ (y, 0+) = 0, ϕ̂(0+) = � − iπΓ/2. (3.5)

The quantity ζ̄ is the correction to the azimuthal mean of the vorticity in the critical
layer and we seek the large-time form of this function to see how the initial condition
eventually alters the vorticity profile in the skirt. From this modification, we can form
diagnostics to test whether satellites persist or not. These are only qualitative as the
weakly nonlinear development does not apply quantitatively at finite values, that is,
not at the threshold.

We solve (3.2) by the same method as in § 5.1 of BLSY, and using the initial
conditions (3.5) gives

ϕ̂ =

(
� − iπΓ

2

)
e−πβt , (3.6)

ζ̂ ′ = 2iβ
(βπ + 2iy)

β2π2 + 4y2
(e−πβt − e−2iyt )

(
� − iπΓ

2

)
. (3.7)

Thus, the large-time form of the solution for ζ̄ in (3.3) can be expressed as

ζ̄ ∞ ≡ ζ̄ (y, t → ∞) = −32βy
|A|2 + π(AiΓr − ArΓi)

(β2π2 + 4y2)2
+ 8(β2π2 − 4y2)

ArΓr + AiΓi

(β2π2 + 4y2)2
,

(3.8)

where A= � − iπΓ/2 and the subscripts r and i denote real and imaginary parts
respectively. As mentioned earlier, we can rotate our axes to make one of the quantities
Γ or � real; thus, without loss of generality we set Γr = Γ and Γi = 0.

3.2. Inflection-point diagnostic

Here, we consider an inflection-point diagnostic used by BLSY: we consider the
contour in parameter space where the azimuthally averaged total vorticity in the
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Figure 2. Threshold contours, for the case when Γ and � are real, inside which satellites do
not persist and outside which they do. Contour 1 is given by the inflection point diagnostic
(3.10), contour 2 by the neutral mode diagnostic (3.16) and contour 3 by the numerical solution
of (2.13)–(2.15). Contour 3 defines the set of parameters for which the first bounce time t = 45.
The stars represent parameter values used in the numerical simulations in § 4.

critical layer ζT =βy + ζ̄ ∞ first develops an extremal point at the critical radius
(y =0). Using this diagnostic with ζ̄ ∞ given by (3.8) and with Γ real, gives the
expression

F (Γ, �) = �2
r + �2

i − π2

4
Γ 2 − π4

32
= 0. (3.9)

Equation (3.9) gives a three-dimensional surface in the parameter space (Γ, �r, �i)
outside which satellites persist and within which the vortex returns to axisymmetry
(i.e. the streamfunction ϕ̂(t) decays to zero).

For the case when � is also real, which corresponds to an initial condition of
the form used by the Navier–Stokes simulations of Rossi et al. (1997) and Barba &
Leonard (2007), we have a contour in the (Γ, �)-plane given by

F (Γ, �) = �2 − 1

4
π2Γ 2 − 1

32
π4 = 0, (3.10)

which describes two hyperbolae, centred on the point �= Γ = 0. For any parameter
values lying between these hyperbolae, the vortex would be assumed to return to an
axisymmetric state and not contain persistent satellites. This contour can be seen as
contour 1 in figure 2.

This inflection point threshold is over-simplified so we do not expect it to agree
well with nonlinear simulations. This is because the existence of an extremal point
does not guarantee satellite persistence, as was observed by BLSY for the generation
of cat’s eyes. Möller & Montgomery (1999) have also used this method in the context
of the full equations of motion and reached similar conclusions to the limitations of
this diagnostic. A more informative diagnostic is to calculate when the vortex has
an axisymmetric basic profile that will maintain a neutral mode, i.e. one where
ϕ̂(t) = constant. Neutral modes of an axisymmetric vortex have been seen to
correspond to persistent cat’s eye structures (Turner, Gilbert & Bassom 2008).
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3.3. Neutral mode diagnostic

To calculate neutral modes of the axisymmetric total vorticity profile in the critical
layer ζT = βy + ζ̄ ∞, we perform a normal mode analysis. This analysis is the same as
that in Hall et al. (2003a) and similar to that in BLSY. From (2.1) and (2.2), we solve
the linearized system

∂t ζ̂ + imy ζ̂ + im(β + ∂y ζ̄
∞)ϕ̂ = 0, i∂t ϕ̂ = PV

∫ ∞

−∞
ζ̂ (y, t) dy, (3.11)

where we have taken a perturbation to the long-time mean profile

ζ = ζ̄ ∞(y) + ζ̂ (y, t)eimθ + · · · (3.12)

For this study m = 2, although m is left arbitrary in the following equations for
mathematical clarity. Solving for ζ̂ (y, t) as in § 3.2, with the initial condition ζ̂ (y, 0+) =
0, and substituting this into the equation for ϕ̂ gives

∂t ϕ̂ = −mβπ

2
ϕ̂ −

∫ t

0

K(t − s)ϕ̂(s) ds, (3.13)

where the kernel

K(t) = m

∫ ∞

−∞
∂yζ̄

∞e−imyt dy . (3.14)

Seeking a solution to (3.13) of the form ϕ̂ ∝ eγ t leads to an implicit equation for the
growth rate γ :

γ = −mβπ

2
−

∫ ∞

0

e−γ uK(u) du. (3.15)

Substituting (3.8) into (3.14), integrating the kernel K(t) in (3.15) by parts and then
using residue calculations, we can express the equation for γ in the implicit form

γ = −mπ

2
− 32m3ρ

(πm + 2γ )3
, (3.16)

where β has been set equal to unity, and

ρ = iπΓ �r −
(

�2
r + �2

i − π2

4
Γ 2

)
(3.17)

is a constant which depends on the initial conditions.
For an arbitrary set of initial conditions, (3.16) can be solved to give a complex

growth rate γ = γr +iγi . We are interested in neutrally stable solutions of this equation
(γr =0) which will correspond to the initial condition producing persistent nonlinear
satellites. This is achieved by solving the quartic equation (3.16) for γ with some initial
set of parameters (Γ, �r, �i) and singling out the growth rate with the smallest real
part. With two of these parameters fixed, the third is varied until γr =0 whereupon a
second parameter is then changed and the first is again updated until γr =0. With the
third parameter held fixed, this maps out a curve in the two-dimensional plane which
satisfies this constraint of neutral stability. For illustration, we consider again the case
when �i = 0 and compare the neutral stability contour for this diagnostic (contour 2),
with the contour given by (3.10) for the inflection point diagnostic (contour 1); these
contours are plotted in figure 2.

Figure 2 shows that the neutral mode diagnostic (contour 2) produces a closed
contour in the (Γ, �)-plane, which has a much smaller region of decaying solutions
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than the inflection point diagnostic (contour 1). Both diagnostics agree at the points
Γ =0, �= ± π2/4

√
2 � ± 1.744, which are given in BLSY. We expect the actual

threshold contour of the fully nonlinear problem to differ from the neutral mode
contour, because the nonlinear effects not present in the neutral mode analysis are
important for the formation of satellites.

4. Numerical simulation and the first bounce diagnostic
The two weakly nonlinear diagnostics formulated in § 3 depend only on the form

of the large-time vorticity perturbation ζ̄ ∞(y). The inflection point diagnostic is quite
crude, and although the neutral mode diagnostic ensures a persistent perturbation,
it is based on only a weakly nonlinear development, and so discards the higher-
order Fourier modes and their interactions. In this section, we formulate a nonlinear
quantitative diagnostic which comes from the numerical solution of (2.13)–(2.15).
Equation (2.13) is solved by expanding ζ ′ as a series of even Fourier harmonics:

ζ ′(y, θ, t) =

N∑
n=−N

ζ ′
2n(y, t)e2inθ . (4.1)

To aid the numerical stability of our code, we introduce the diffusive term R−1
eff ∂2

y ζ
′

to the right-hand side of (2.13) (Hall et al. 2003b). The inclusion of this viscous
term destroys any fine-scale structure in the vorticity field, but this does not affect
the threshold values we calculate. Moreover, we have checked that for Reff � 105

the results are insensitive to the value of Reff: we set Reff = 105 and our results are,
for practical purposes, inviscid. This system of equations is then marched forward
in time using a Crank–Nicolson scheme for the advective and diffusive terms, and
an Adams–Bashforth method for the nonlinear terms. The coordinate y across the
critical layer is treated via a finite-difference scheme.

For simplicity, the PDE (2.13) is discretized in the finite domain y ∈ [−L, L];
thus boundary conditions are imposed on ζ ′

2n at y = ± L for n= 0, 1, . . . , N . This is
achieved by considering the large-y asymptotic form of the solutions for each ζ ′

2n. It
is possible to calculate numerous terms in these asymptotic expansions; however, for
numerical accuracy, it is sufficient to use only the leading-order terms. The large-y
conditions imposed are

ζ ′
0 ∼ 2ity−1(Γ ϕ̂∗e−2iyt − Γ ∗ϕ̂e2iyt ), (4.2)

ζ ′
2 ∼ −βϕ̂y−1 + β(� − iπΓ/2)y−1e−2iyt , (4.3)

ζ ′
4 ∼ 2itΓ ϕ̂y−1e−2iyt , (4.4)

ζ ′
2n ∼ 0, ∀ n > 2. (4.5)

The numerical solution of ϕ̂ contains oscillations which are due to the integral
of 〈ζ ′

2〉 in (2.14) being approximated over a finite range of y. These oscillations are
removed at leading order by using (4.3) to approximate the integral in (2.14) outside
the y ∈ [−L, L] domain; this calculation is given in Appendix A. This method,
however, does not remove all the oscillations, which persist at the next order, and
so we time-average our solution to produce a smooth result, as is also described in
Appendix A.

In the present study, we found it sufficient to set the parameter L = 20. For all
the threshold calculations in this paper, we found using M = 5001 grid points in the
y-direction and N = 32 equations to be the minimum values needed to give consistent
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Figure 3. Figures of ζ̄ (y, t = 40) (solid lines) and ζ̄ ∞(y) (dotted lines) given by (3.8) for
(a) (Γ,�) = (0, 0.3) and (b) (Γ,�) = (0.3, 0.3).

results. For nonlinear calculations (i.e. larger Γ and �) just above the threshold for
satellite formation these should be increased to M = 8001 and N =128.

Figure 3 shows two results of the numerical solution of (2.13)–(2.15) when the initial
condition parameters Γ and � are both real. The correction to the mean azimuthal
profile ζ̄ (y) is plotted at t = 40 and compared with the ζ̄ ∞(y) result in (3.8) for
(a) (Γ, �) = (0, 0.3) and (b) (Γ, �) = (0.3, 0.3). For both cases, the numerical solution
(solid line) and the asymptotic model (dotted line) are in very good agreement with one
another showing that the numerical code works correctly. The small difference between
the two methods is due to higher-order terms of the small-amplitude expansion, and
this difference increases as the parameters Γ and � are increased towards the threshold
values and beyond.

Figures 4 and 5 show typical results from the numerical solution of (2.13)–(2.15).
Figure 4 shows |ϕ̂| on a log scale as a function of t for three runs with (Γ, �) = (0.2, 0.7)
for curve 1, (Γ, �) = (0.4, 0.9) for curve 2 and (Γ, �) = (0.4, 1.1) for curve 3. The
parameter values for curve 1 correspond to a case where |ϕ̂| decays to very small
values very quickly, and never increases again at large times. This is a weak initial
condition run, where the vortex would return to an axisymmetric state and the
perturbation would wind up. Curve 3 in figure 4 is a run with a strong initial
condition for which |ϕ̂| rises in value after an initial period of decay and then
oscillates about |ϕ̂| =0.01. This corresponds to a case where satellites form in the
critical layer, as can be seen in the total vorticity plot in figure 5(b). In this plot we
can see the total vorticity ζT = y + ζ winding around inside the satellites, and that
owing to the introduction of a non-zero Γ , these satellites are no longer situated at
y = 0 as they would be if Γ =0 (see figure 16 of BLSY). Curve 2 in figure 4 represents
a case between the other two, where |ϕ̂| does rise after an initial period of decay, but
it does not oscillate around quite as rapidly as curve 3. The total vorticity for curve 2
at t =60 can be seen in figure 5(a). This plot again shows the vorticity winding around
in the critical layer, but in this case the winding is not so clear, and also there is some
breaking up of the flow in the centre of the satellite. We shall see later that this case
lies on the threshold between persistent satellites and decaying solutions. These three
parameter values are plotted as the stars in figure 2 of § 3.

The study of BLSY determines whether or not generated cat’s eyes persist or decay
away by considering the ‘first bounce’ in the streamfunction, |ϕ̂(t)|. The first bounce
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Figure 4. Plot of |ϕ̂(t)| for three typical numerical solutions of (2.13)–(2.15) with
(Γ,�) = (0.2, 0.7) for curve 1, (Γ,�) = (0.4, 0.9) for curve 2 and (Γ,�) = (0.4, 1.1) for curve 3.
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Figure 5. Grey-scale pictures of the total vorticity ζT = y +ζ for (a) (Γ,�) = (0.4, 0.9) and (b)
(Γ,�) = (0.4, 1.1). These snapshots are taken at t = 60 in (a) and t = 40 in (b) where positive
vorticity is white and negative vorticity is black. Note that the vertical scales are different, and
that the whole y domain is not displayed.

is the position of the first maximum in the streamfunction that occurs after the
initial exponential decay. The position of the first bounce is depicted by the arrows
in figure 6. When � � 0.1, |ϕ̂(t)| is a smooth function (see the solid line in figure 6),
and so measuring the position of the first bounce is simple. However, when � is
small and Γ is moderately large (see dashed line in figure 6), then there is a feedback
from the vorticity in the critical layer to the streamfunction and vice versa. Thus,
|ϕ̂(t)| contains oscillations and so calculating the position of the first bounce is more
complicated. For this case, a first bounce fit is done by eye rather than by calculating
the position of this turning point in the time-averaged streamfunction.

In their study, BLSY use as a criterion that if the first bounce occurs after t = 45
then cat’s eyes do not persist. This time value places an upper bound on the threshold
contour and avoids numerical error which can accumulate in long-time integrations
with small values of ϕ̂. As we find that our results are insensitive to the precise
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Figure 6. Plot of |ϕ̂(t)| on a log scale for (Γ,�) = (0, 1) (solid line) and (Γ,�) = (1.25, 0.05)
(dashed line). The arrows denote the first bounce as defined in BLSY.

choice of this cutoff time, we adopt this same criterion for our study. To calculate the
threshold curve for this diagnostic with Γ and � real, we reduce � for a fixed Γ until
the first bounce occurs after t =45. This will generate a contour in the (Γ, �)-plane
within which satellites decay and outside which they persist.

The first bounce threshold described above is plotted as contour 3 in figure 2
along with the inflection point threshold (contour 1) and the neutral mode threshold
(contour 2). We see that the first bounce threshold gives a much smaller region of
the parameter space where satellites decay, although the shape of this contour is very
similar to that of the neutral mode threshold and the difference between the two
is only roughly a factor of 2. The point on the contour where Γ = 0 (� � 0.97)
agrees exactly with the value for an instantaneous kick (T =0) in figure 13 of BLSY.
Although increasing the cutoff time t =45 used in our criterion will bring the contour
in slightly, the numerical evidence from simulations of (2.13)–(2.15) is that the effect
is very minor, the position of the contour is insensitive to this choice and that for
disturbances inside this contour the streamfunction ultimately decays. In the next
section, we examine this statement further by running full nonlinear simulations of
the Navier–Stokes equations and comparing the results to the threshold given by the
asymptotic model.

5. Comparison with Navier–Stokes simulations
In § 4, we calculated the first bounce threshold in parameter space using the

asymptotic theory of BLSY, within which satellites decay and the vortex returns to an
axisymmetric state and outside which they persist and the vortex remains elliptical.
In this section, we form a link from the parameter values in this asymptotic method
to the parameter values related to full Navier–Stokes simulations in (1.1), (1.3) and
(1.4). Our simulations will show that there is a region of parameter space where the
asymptotic model agrees well with the full numerical simulations, and outside this
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Figure 7. Plot of the vorticity profile (1.3) for σ = 0.7, 0.8, 0.9 and 1 represented by the
solid, dashed, dotted and dot-dashed lines, respectively.

region, where the agreement is not so good, we offer explanations as to why this is
the case. We fix m = 2 in what follows, with the critical layer at r2 =

√
2.

In the full simulations we solve the Navier–Stokes equations using a numerical
scheme which incorporates 128 even Fourier modes in the azimuthal θ direction
and a finite difference method consisting of 1500 points in the radial r direction.
The code integrates the time derivative and the diffusive term together using a
Crank–Nicolson scheme, while the nonlinear terms are incorporated explicitly via
the Adams–Bashforth method. For more information on this numerical scheme see
Turner & Gilbert (2007). The initial condition used in the simulations is given by
(1.1) where Z0(r) is as in (1.3), but here we write

Z2(r) =
ra

4π

1 − tanh
((

r2 − σ 2
2

)
/(4(1 − σ2))

)
1 + tanh

(
σ 2

2 /(4(1 − σ2))
) , (5.1)

where

a =
1

2(1 − σ2)

(
1 + tanh

(
1 + σ2

4

))
. (5.2)

This is because now the maximum value of Z2(r) occurs at r = 1 for all σ2, which
improves the comparison with the asymptotic theory as the position of the maximum
of Z2(r) now agrees with that of g(r) in (B 2). However, this form of Z2(r) is only
appropriate for σ2 > 0.65 because then a > 2 and the function Z2(r) is relatively
smooth at the origin.

The parameter σ in (1.3) is chosen close to 1 so that the vortex resembles a Rankine
vortex plus a small asymptotic skirt εZS(r) as in (1.5). Thus when calculating εZS at
the critical layer r = r2, outside the core of the vortex, we identify this with Z0(r2).
Figure 7 plots the vorticity profile (1.3) with σ = 0.7, 0.8, 0.9 and 1 showing that as
σ approaches 1, the profile tends to a Rankine vortex. The two parameters δ and σ2

in (1.3) and (5.1) are linked to the asymptotic parameters Γ and � via (2.7). For a
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Figure 8. Plot of |Q2(t)| for σ = σ2 = 0.78 and δ = 0.037 (solid line) and δ = 0.111 (dotted
line). The solid line is a case where the satellites decay and the vortex becomes axisymmetric,
and the dotted line is a case where the satellites persist.

fixed value of σ2, varying δ moves us along a straight line in the (Γ, �)-plane, whereas
changing σ2 varies the angle between this straight line and the line Γ = 0.

For the numerical simulations presented here, we set σ2 = σ and vary σ . For each
σ , we ran our numerical simulation for various values of δ, and by considering the
magnitude of the second multipole moment Q2(t) where, in general,

Qm(t) =

∫ ∞

0

rm+1ζm dr, (5.3)

we were able to determine whether satellites persist, signalled by |Q2(t)| not decaying.
By way of illustration, figure 8 plots ln |Q2(t)| for σ = σ2 = 0.78 and δ = 0.037 (solid
line) and δ = 0.111 (dotted line). The solid line is a case where |Q2| decays and
the perturbation decays, while the dotted line is a case where |Q2| oscillates and
the satellites persist. All of the numerical simulations were run with a Reynolds
number R =107, which at first sight appears large enough to ensure that the results
are inviscid for practical purposes. However, as we will see shortly, this Reynolds
number maps to the effective Reynolds number, Reff, for the asymptotic theory which
in certain parameter ranges may no longer be large enough to guarantee that the
evolution is practically inviscid on the (short) spatial and (long) temporal scales of
the critical layer.

Figure 9 plots Z′
0(r2) against δ, where our full Navier–Stokes simulations are

represented by points in this plane. The solid line indicates the asymptotic result
given by contour 3 in figure 2, and Z′

0(r2) ≡ εZ′
S(r2) is the small parameter from

the BLSY theory. The squares in figure 9 represent runs where the amplitude of the
multipole moment Q2(t) decays sufficiently that the vortex enters a regime that is
governed by the core of the vortex (Bassom & Gilbert 1998) (see solid line in figure 8)
and hence would not then grow at a later time. The circles represent runs where the
amplitude of the multipole moment has not started to decay after a sufficiently long
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Figure 9. Plot of δ as a function of Z′
0(r2). The circles depict simulations where |Q2(t)| persists,

and the squares where it decays. The solid line represents contour 3 in figure 2, inside which
the nonlinear perturbation decays.

run (up to t =5 × 104). We see that the agreement between the numerical simulations
and the asymptotic theory improves as the small parameter Z′

0(r2) decreases, which is
as expected because this value is equivalent to the small parameter ε in the asymptotic
theory. Note that the range of good agreement occurs for Z′

0(r2) � 0.021 (σ � 0.8);
by examining the vorticity profiles in figure 7, we can see that the σ =0.8 profile is
actually quite broad and thus this asymptotic theory agrees well with the numerical
simulations for reasonably broad vortices as well as ones with sharper edges. However,
for Z′

0(r2) � 0.0132 (or σ � 0.84), we find that the good agreement begins to evaporate:
at parameter values where satellites should persist according to the asymptotic model,
the full simulation shows decay. This can be explained by considering the Reynolds
number R from the full numerical simulations and the effective Reynolds number
of the asymptotic theory Reff based on the spatial and temporal scales in the critical
layer; these both conspire to make Reff much less than R for small ε. More specifically,
these two quantities are related via the expression

R−1
eff = R−1 ε−3L−2T, (5.4)

where L and T are the length and time scales given in (B 7) of Appendix B (Hall
et al. 2003b). When the limiting compact vortex is the Rankine vortex, as for our
simulations, we obtain

R−1
eff =

8
√

2 R−1

π2|Z′
0(r2)|3

. (5.5)

The effective Reynolds number for the case when R = 107 is plotted in figure 10. For
the values of 0.016 <Z′

0(r2) < 0.021, we obtain good agreement between the numerical
simulations and the asymptotic theory (see figure 9) and we see from figure 10 that the
effective diffusivity R−1

eff is reasonably small in this region. Thus, any diffusive effects
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Figure 10. Plot of the effective diffusivity, R−1
eff as a function of Z′

0(r2) for R = 107.

due to the critical layer being very thin are small, and the results are the same as the
asymptotic theory in § 4, where we fixed Reff = 105. For Z′

0(r2) > 0.021, R−1
eff decreases

further and so the reason for the disagreement between the results in figure 9 in this
region is not due to diffusive effects, but is simply that our vorticity profile Z0(r)
is no longer close enough to the asymptotic limit of Rankine vortex plus a skirt of
vanishing strength.

However, as we decrease Z′
0(r2) from 0.016, our vorticity profile becomes much

more like a Rankine vortex plus a skirt, so we expect our full simulations to agree
better with the asymptotic theory. Unfortunately because the critical layer becomes
thinner, the effective Reynolds number decreases and diffusive effects become more
significant. This problem can be overcome by increasing the Reynolds number R of
the full simulation. When a simulation plotted in figure 9 shows persisting satellites,
we observe that increasing R does not make them decay, but it can make a decaying
simulation grow or persist by making the problem more inviscid. Results of the full
simulation with R = 108, 109 and 1010 show that the decay observed above the solid
line in figure 9 for Z′

0(r2) < 0.016 appears to turn into persistence and growth, while
the parameter values below the line still give decay. However, at these large Reynolds
numbers, the full numerical simulation could not be run for the same length of time
as the R = 107 case; although we could not verify that these results would persist to
the same accuracy as in figure 9, the evidence we have does suggest this is the case.
Overall, we believe that our numerical results indicate that the asymptotic theory is
correct, and discrepancies for very sharp vortices are down to the limits of running
simulations at sufficiently high Reynolds numbers.

In the asymptotic theory, the sign of vorticity in the critical layer is of secondary
consideration as the constant Γ0 in (2.5) has no influence on the dynamics. Thus when
satellites are formed they could equally well be positive, cat’s eyes or negative satellites
giving a tripole, depending on the value of Γ0. We note that a similar issue arises
in the Navier–Stokes simulations, as a constant can be added to the initial vorticity
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Figure 11. Plot of the vorticity Z showing persistent negative satellites for σ = σ2 = 0.8 and
δ = 0.2212. The vorticity is capped at |Z| =0.0001 (white), zero vorticity appears as grey and
negative vorticity is black.

profile, corresponding to working in a rotating frame. This has led us to conclude that
both a tripole and a vortex with cat’s eyes amount to the same nonlinear structure,
but the sign of the vorticity in the satellites is entirely dependent on the average level
of vorticity around the critical layer initially.

We highlight this below with a typical Navier–Stokes simulation. The form of the
initial vorticity profile (1.1) is that of a positive elliptical core with two negative regions
of vorticity above and below the core (with m = 2), this can be seen in figure 11(a).
Figure 11 shows the evolution of an initial vorticity distribution with σ2 = σ = 0.8
and δ = 0.2212. This case is one which has persistent satellites. The vorticity plotted
is capped at |Z| =10−4. The positive vorticity is white in the figure, grey signifies zero
vorticity and the black regions are regions of negative vorticity. We see in figure 11
that the satellites do persist for long times, and the vorticity in the critical layer
includes negative inclusions (depicted as black). This means that this is a tripole with
a positive core and two negative satellites rotating around it as in figure 1. However,
adding on the constant Zmin to the initial profile (1.1), where Zmin is the minimum
vorticity in the run depicted in figure 11, would produce a vortex with the same
structure as in figure 11 except the black regions would now correspond to regions
of positive vorticity. Note that we could add on a constant globally, or just locally
within the critical layer by modifying the initial profile.

The simulation with δ = 0.2212 in figure 11 is well above the threshold for persistent
satellites, as can be seen in figure 9. For simulations just above the threshold for
persistence, the satellites are very thin and viscous effects come into play: in a plot



Thresholds for the formation of satellites in two-dimensional vortices 399

similar to figure 11, it would be difficult to see the sign of the vorticity in the critical
layer, and so whether there are positive or negative satellites present.

6. Conclusions
In this paper we have studied the evolution of a sharp-edged vortex with an additive

perturbation via both asymptotic and numerical methods. We adapt the asymptotic
theory of BLSY so that we can stipulate an initial amplitude of mode m vorticity
in the critical layer and an initial streamfunction amplitude of the perturbation. In
the case when these two parameters are real we were able to construct a contour in
this parameter space, within which the streamfunction decays in time and the vortex
returns to an axisymmetric state and outside which the vortex remains elliptical
and a satellite structure persists in the vortex. The results from this paper were all
constructed with Z2(r) real, and hence Γ and � real, to agree with the studies of
Rossi et al. (1997) and Barba & Leonard (2007), but could be extended to cover the
full three-dimensional parameter space. Also, it should be noted that these results
are universal in that they apply to any family of vortices for which the BLSY theory
becomes valid, in other words which asymptotically have the structure of a compact
vortex supporting a normal mode, plus a weak skirt of vorticity. Thus by considering
the family of compact vortices in BLSY, we could calculate Γ and �, via (B 10) and
(B 13), for the Gaussian profiles used by Rossi et al. (1997) and Barba & Leonard
(2007), and hence qualitatively verify their results.

We compared our first bounce threshold from the nonlinear study to two thresholds
based on weakly nonlinear theory, an inflection point threshold and a neutral mode
threshold. The inflection point threshold was very crude and did not agree well with
the first bounce threshold; however, the neutral mode threshold agreed in shape with
the first bounce threshold and was only out by a factor of two in magnitude.

The first bounce threshold was compared to full numerical simulations of
the Navier–Stokes equations. These simulations showed that as our core vortex
approached a Rankine vortex plus an asymptotic skirt the numerical results agree
well with the asymptotic results while the effective Reynolds number was large. The
Navier–Stokes simulations, like the BLSY model, are unaffected by the addition
of a constant of vorticity initially. This has led us to conclude that these satellite
structures successfully describe both multipole and cat’s eye vortices, i.e these two
types of vortices are essentially the same, except their azimuthal averaged profiles
will be different (Barba & Leonard 2007; Turner & Gilbert 2007). In the context of
geophysical applications and two-dimensional turbulence, sharp-edged vortices are
commonplace and our study indicates that the thresholds for the formulation of
tripole structures will tend to be low in cases when the critical layer lies beyond
the sharp edge. Of course, continual external forcing of such vortices is likely to
lead generally to a more complex vorticity structure in the layer, and a ‘surf zone’
can occur (Thuburn & Lagneau 1999). The enhanced mixing that occurs in such
zones can, in turn, sharpen up the edge of the vortex, and this interaction of mixing
and profile evolution is currently under investigation in random and deterministic
contexts.

This work was undertaken on the EPSRC grant EP/D032202/1. We would also
like to thank Lorena Barba, Andrew Bassom and John Thuburn for useful comments
in the preparation of this paper. A. D. G. was the recipient of a Leverhulme Trust
Research Fellowship during this study.
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Figure 12. Plot of |ϕ̂(t)| for (Γ,�) = (0, 1). The dotted line shows the results before time
averaging and the solid line after time averaging.

Appendix A. Asymptotic form of the integral in (2.14) outside
of y ∈ [−L, L]

In this Appendix we show how the large-y asymptotic solutions to (2.13)–(2.15) are
used to approximate the contribution to the integral 〈ζ ′

2〉 in (2.14) from outside the
domain y ∈ [−L, L]. To calculate the correction terms to this integral outside this
domain up to O(L−1), we require the O(y−2) terms in (4.3). These can be calculated
easily and give

ζ ′
2 ∼ −βϕ̂

y
+

β(� − iπΓ/2)e−2iyt

y
− iβϕ̂t

2y2
−2t2ϕ̂2Γ ∗e2iyt

y2
− iβ2π

2y2

(
� − iπΓ

2

)
e−2iyt . (A 1)

When substituted into (2.14) this leads to

〈ζ ′
2〉 = 〈ζ ′

2〉L − i

L
ϕ̂t − 2i(1 − β2πt)

(
� − iπΓ

2

)∫ ∞

L

sin(2yt)

y
dy

− β2π

(
� − iπΓ

2

)
cos(2Lt)

L
+ O(L−2), (A 2)

where 〈〉L is the principal value integral evaluated between y = − L and L. This
approach is equivalent to that in Appendix A of BLSY; however, in this case, the
non-zero initial conditions produce a more complicated expression.

The inclusion of these correction terms in (2.14) eliminates the oscillations that
occur in the numerical solution of ϕ̂ at leading order. However, oscillations remain
at the order of L−2, and we have not tried to eliminate these completely because it
would require many correction terms. Thus, to produce a smooth function of ϕ̂(t),
for plotting and calculation purposes, we time average the solution over the period
π/L of the oscillations. As an example, plots of |ϕ̂(t)| with (Γ, �) = (0, 1) with and
without time-averaging are shown in figure 12. As L is increased, the period of the
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oscillations reduces as O(L−2), as does the amplitude at the same rate; however, it is
not practical to remove the oscillations this way as this requires an increase in the
number of mesh points in the y-direction which increases the running time of the
code making it numerically impractical. We found that varying L produces consistent
time-averaged results.

Appendix B. Asymptotic theory
In this Appendix, we give a brief overview of quantities from the derivation of the

asymptotic theory used in the paper, in particular (B 10), (B 13) and (B 24). See BLSY
for more detailed information. We seek an asymptotic solution for the total vorticity
Z of the Navier–Stokes equation in the form

Z(r) = ZC(r) + εZS(r) + ε2ζ 0 + ε3ζ 1 + · · · . (B 1)

The quantity ZC(r) is the vorticity profile of a compact vortex, which we take to be
a Rankine vortex in the main paper, ZS(r) is an asymptotic skirt and ε � 1. In the
main body of the paper, the quantity ZC(r) + εZS(r) is combined into the full profile
Z0(r), which is the tanh profile for our full simulations.

We consider perturbations to the compact vortex: such a vortex may support a
family of (undamped) Kelvin waves, at most one for each mode m. Each Kelvin wave
has a critical radius rm, where the vortex and the fluid co-rotate with angular frequency
ωm. We let the functions f (r) and g(r) be the corresponding linear perturbations to
the streamfunction and vorticity. For the Rankine vortex these are

fm(r) =

{
(rmr)m (r < 1),

(rm/r)m (r > 1),
gm(r) = −2mrm

mδ(r − 1). (B 2)

Outside the critical layer at r = rm, the solution is the Kelvin wave with a complex
amplitude that evolves, slowly, according to the behaviour in the critical layer,

[ψ0, ζ 0] = a(ϑ, τ )[f (r), g(r)]. (B 3)

Here ϑ = θ − ωmt , τ = εt is a slow time scale and a(ϑ, τ ) = â(τ )eimϑ + c.c. is the
amplitude function, where rm = (m/(m − 1))1/2. In deriving (2.1)–(2.4) the following
quantities appear

I1 = −
∫ RC

0

rfg

mrmΩ̃C

dr, Ω̃C ≡ ΩC(r) − ΩC(rm), (B 4)

where RC is the radius of the compact vortex, beyond which ZC = 0.
The gradient of the vorticity inside the critical layer scales as

β ≡ sgn (μm) = −sgn(Z′
S(rm)), (B 5)

where

μm ≡ Z′
S(rm)

rmΩ̃ ′
C(rm)

. (B 6)

When β = − 1, the vortex has a positive skirt and hence gives unstable solutions. As
we are interested only in stable solutions, we set β =1 in this study. The system has
a second rescaling by introducing the space and time scales

L ≡ − |μm|
I1Ω̃

′
C(rm)

, T ≡ I1

|μm| . (B 7)
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To determine the constants Γ and � in terms of δ and Zm(r), consider the initial
vorticity distribution of the fully nonlinear Navier–Stokes simulations

Z = ZC(r) + εZS(r) + δZm(r)eimθ + c.c., (B 8)

where δ and the form of the mode Zm(r) determine the values of Γ and �. In this
Appendix, we show how these parameters are related to the parameter δ of the fully
nonlinear problem. In the critical layer, at t = 0, we compare the expansion (B 8)
with

Z = ZC(r) + εZS(r) + ε2ζ 0(r, θ) + ε3ζ 1(r, θ) + · · · . (B 9)

Omitting some details on the scalings (to be found in BLSY), when this is rescaled,
we find the amplitude of the mode m in the critical layer to be

Γ =
T

rm|μm| ε−2δZm(rm) =
rmI1Ω̃

′2
C (rm)

ε2Z′2
S (rm)

δZm(rm). (B 10)

Outside the critical layer, we compare (B 8) at t = 0 with the expansion

Z = ZC(r) + εZS(r) + ε2â(0)g(r)eimθ + c.c. + · · · , (B 11)

where the function g(r) for a Rankine vortex is defined in (B 2). At leading order,
we can neglect the effect of the skirt and just consider perturbations to the compact
vortex Z =ZC . The initial perturbation δZm(r)eimθ will excite the normal mode by
an amount we call δPm and it will also excite the continuous spectrum. The latter
perturbations will wind up and become finely scaled on the fast t-time scale, and
hence are irrelevant. However, the perturbation to the normal mode will evolve on
the slow τ -time scale and so will be significant.

It is sufficient to write the initial condition as

â(0) = ε−2δPm, (B 12)

where Pm is the projection onto the normal mode, to be determined shortly. Rescaling
this initial condition we find

� = ϕ̂(0) =
T

rmL â(0) = −rmI2
1Ω̃

′3
C (rm)

ε2Z′2
S (rm)

δPm. (B 13)

To find the value of the projection Pm, we consider the linearized form of the
Navier–Stokes equation by writing

ζ = ζ0(r) + ζm(r, t)eimθ , ψ = ψ0(r) + ψm(r, t)eimθ . (B 14)

We then take the Laplace transform of the resulting equation with respect to t , with

f̄ m(p) =

∫ ∞

0

eiptfm(t) dt, fm(t) = − 1

2π

∫ −∞+iγ

∞+iγ

e−ipt f̄ m(p) dp. (B 15)

It can be shown that the Laplace transform of the multipole moment Qm(t) in (5.3)
can be written as

Q̄m(p) = lim
r0→∞

− irm
0

ΨL(r0, p)

∫ r0

0

sΨL(s, p)ζm(s, 0)

mΩC(s) − p
ds, (B 16)
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(Schecter et al. 2000; Turner & Gilbert 2007), where ΨL(r, p) satisfies the homogeneous
equation [

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

mZ′
C(r)

r(p − mΩC(r))

]
ΨL(r, p) = 0, (B 17)

with ΨL(0, p) = 0. Here, r = r0 is a large radius, that is taken to be finite and then
allowed to tend to infinity. When (B 16) is inverted to find Qm(t), the inversion
contour is closed around any singularities in the p-plane. These singularities can
occur because of the normal mode, when ΨL(r0 → ∞, p) vanishes for some p, or
because mΩC(s) − p vanishes for some s in the range 0 to ∞. The second of these
is the continuous spectrum of the vortex, which may be bent below the real p-axis
by moving the s-contour above the real s-axis in (B 16) (Briggs et al. 1970; Schecter
et al. 2000).

Examining (B 17) shows that this is exactly the equation satisfied by the functions
f (r) and g(r), and thus the solution for the normal mode is p = mωm and
ΨL(r, p) = f (r, p). Now inverting (B 16) by deforming the contour around the
singularity at p =mωm only, we find that

Qm(t) = −iR

∫ ∞

0

sf (s, mωm)ζm(s, 0)

m(ΩC(r) − ωm)
ds e−imωmt , (B 18)

where R is the residue at p = mωm,

R = Res
p=mωm

[
lim
r0→∞

(
− irm

0

f (r0, p)

)]
. (B 19)

To calculate Pm from this expression, we calculate Qm(0) for our initial condition
Zm(r) and we divide by QNM

m (0) for the normal mode, where ζm(r, 0) is replaced by
g(r) and the corresponding projection Pm = 1 by definition. We find that

QNM
m (0) = iRrmI1, (B 20)

and thus

Pm = −I−1
1

∫ ∞

0

sf (s)Zm(s)

mrmΩ̃C(s)
ds, (B 21)

where the contour of integration is bent above the singularity at rm given by

Ω̃C(rm) = 0. As we have bent the contour above the pole at rm, we can write the
expression for Pm as a principal value integral plus a contribution from the pole,

Pm = −I−1
1

(
PV

∫ ∞

0

sf (s)Zm(s)

mrmΩ̃C(s)
ds − iπ

m

Zm(rm)

Ω̃ ′
C(rm)

)
. (B 22)

However, we realize that the imaginary part here looks familiar: on its own, when
inserted into � in (B 13), it gives a term

− iπ

m

rmI1Ω̃
′2
C (rm)

ε2Z′2
S (rm)

δZm(rm). (B 23)

For m = 2, this is precisely −iπ/2 times the quantity Γ and what we are recovering
is the initial delta-function forcing of the quasi-mode amplitude � by the vorticity in
the critical layer, a quantity we disentangled in (2.15). This is a useful check, but to
avoid accounting for this twice, we delete the imaginary part of Pm to leave as our
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definition

Pm = −I−1
1 PV

∫ ∞

0

sf (s)Zm(s)

mrmΩ̃C(s)
dr. (B 24)

which in the case of the Rankine vortex amounts to (2.8).
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